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Executive Summary

1. The cost efficiency of Air Navigation Service Providers (ANSPSs) is an
important element in the creation of an efficient Single European Sky.
Each ANSP serves an individual airspace and in so doing is a natural
monopoly. Since there is little direct competition in the market, efficiency
is not encouraged by sound competitive pressure.

2. Benchmarking can provide a useful substitute for such settings.
Benchmarking allows us to identify best practices, and if ANSPs are
asked over time to adjust to best-practice cost, their cost efficiency will
converge towards cost in a competitive setting. Hence, instead of
competing on the market, we create pseudo competition via
benchmarking based regulation, where the ANSPs compete via a
model.

3. In this report, we develop two such benchmarking models, and we
discuss how to combine them. One is based on data envelopment
analysis (DEA) and another on stochastic frontier analysis (SFA). They
can be combined in different ways (min, max, average) to determine
more or less ambitious cost targets for each individual ANSP. We
calculate such cost targets for the individual ANSPs operating different
parts of the Single European Sky.

4. We analyze en-route and terminal activities separately rather than gate-
to-gate provision. En-route provision has remained a monopolistic
service provided by a single ANSP in each Member State. Competition
for the market in terminal provision has begun in Sweden, Germany, the
UK and Spain. Competition for the market, which auctions the services
to the most competitive bidder for a specific, pre-specified timeframe,
could replace the need for economic regulation. Indeed, countries in
which the auctioning process has been initiated are not required to
provide data on the services to the European Commission.

5. We find that the ANSPs could save between 25 and 30% of total costs
on average by adjusting to best practices. However, there are
substantial differences in potential cost saving levels across the
individual ANSPs. It is therefore natural to work not only with a general
cost reduction requirement to capture technological progress, but also
to work with additional individual requirements encouraging the less
efficient ANSPs to catch-up to best practices. In this report, we focus on
these individualized requirements after accounting for the environment
including variability and complexity.
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6. The results of the two, very different, modeling approaches are
subsequently combined. Several approaches are possible including the
most conservative, benefit of the doubt approach, in which the highest
efficiency estimate is assigned to the individual ANSP. According to this
approach, potential cost savings of one billion euros was possible in
2016 in the en-route sector and another 300 million in terminal provision.

7. In summation, the results suggest that the determined unit cost rate for
the beginning of reference period 3, were the ANSPs to provide their
services efficiently from a cost perspective, could be in the range of 38
standardized 2016 euros and that this should drop by 5% to 36 euros in
2024, after accounting for expected demand growth.

8. We note that the data shows large heterogeneity suggesting that:

)] standardized accounting practices need to be strengthened such
that the cost categories are clearly defined.

1)) there would appear to be a lack of distinction between en-route
and terminal activities.

These issues lead to substantial uncertainty and, in some cases,
differences in the solutions of the models. In the SFA approach, the
noise in the data explains 30% of the variation in the en-route sector and
this is substantially higher in the terminal sector. Consequently, we
would advise the PRB to follow through on reported information in order
to ensure that economic information is improved in the near future. It is
important to continue to estimate the efficiencies with new data once it
becomes available and it would be helpful to speed up the reporting
process since a year and a half is unnecessarily long.

9 Finally, given the substantial difference in findings across the ANSPs,
after accounting for environmental externalities, it is clear that the price
caps set for reference period 3 ought to be individual. A distinguishable
set of ANSPs are working a long distance from best practice whereas
others do not require so much guidance.
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Introduction

Background

Ernst & Young Special Business Services CVBA, Belgium, has been
engaged by The European Commission — DG MOVE to assist in the
implementation of performance and charging schemes for air navigation
services. E&Y has subsequently engaged the Academic Group to help
in provision of certain services within the scope of its contract with DG
MOVE.

The task of the Academic Group is to provide advice to the Performance
Review Board (PRB) on target setting for cost efficiency in view of RP3.

Overall objective of the Academic Group assignment

The Academic Group has been asked to provide a report and a model
to the PRB with meaningful and scientifically robust EU-wide targets on
cost efficiency and on first-best local targets based on a benchmarking
of ANSPs from the efficient cost frontier based on a proven models.

Using the information in the regulation process

This project does not include support for the selection of the regulatory
framework. It suffices therefore to note that the benchmarking
undertaken supports many types of regulatory frameworks, including
cost plus, revenue and price caps, yardstick competition and even
concession based auctions (Bogetoft, 2012; Deliverable 5 of COMPAIR,
2018).

We note that auctions have begun in terminal provision in some
countries, namely Germany, Spain, Sweden and the United Kingdom.
For greater detail, refer to Deliverable 3 of the COMPAIR project?!, 2018.

This project also does not include the transformation of benchmarking
results into specific requirements within a given regulatory framework.
We are not missioned to guide in the selection of a specific rate by which
ANSPs can reasonably catch up to best practices.

The report

In this report, we present the results of our analysis. The presentation is
structured as follows:

1 https://www.compair-project.eu/



ACADEMIC GROUP ANSP BENCHMARKING

e Regulatory Benchmarking

e Data and data standardizations
e DEA and SFA models

e Saving Potentials

e Final Remarks



ACADEMIC GROUP ANSP BENCHMARKING 8

2. Regulatory benchmarking

2.01

2.02

2.03

2.04

2.05

2.06

Benchmarking methods, and in particular Data Envelopment Analysis
(DEA), and Stochastic Frontier Analysis (SFA) have become well-
established and informative tools for economic regulation. DEA and SFA
are now routinely used by European regulators to set reasonable
revenue / price caps for energy transmission and distribution system
operators for example. The application of benchmarking in regulation,
however, requires specific steps in terms of data validation, model
specification and outlier detection that are not systematically
documented in open publications.

We note that the Performance Review Unit (PRU) of Eurocontrol has
been collecting data systematically on ANSP services since 2002. We
note that substantial work on verifying data is undertaken leading to the
likelihood that the information for the timeframe analyzed (2006 to 2016
inclusive) should be reasonably reliable.

In this chapter, we explain the modern foundations for frontier-based
regulation, and we discuss its use in the present project aimed at
regulating ANSP charges.

Benchmarking

In the business world, benchmarking is traditionally thought of as a
managerial tool that helps improve performance by identifying and
quantifying the impact of applying best documented practice. Managers
compare the performance of their respective organizations, products
and processes externally with competitors and best-in-class companies
and internally with other operations within their own organizations that
perform similar activities.

The idea of best practice is important. In benchmarking the idea is not
to compare existing organizations to some theoretical ideal or green-
field solution. Rather, the idea is to use best realized practice as the
benchmark. This naturally implies that the benchmarking targets are
achievable, relative to the comparators and evolving from the action of
the firms. Consequently benchmarking in both models applied here are
reasonably conservative since they estimate only relative efficiency.

KPI based

Traditionally benchmarking focuses on key performance indicators
(KPIs). KPlIs are ratio numbers that are assumed to reflect the purpose
of the ANSP in some essential way. KPIs are widely used by operators,
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shareholders, regulatory agencies, researchers and others with an
interest in performance evaluation. Well-known KPIs are related to the
analysis of financial accounts. They include indicators like Return on
Investments (=net income/total assets), gross margin, etc.

Unfortunately, the use of KPIs has its limits.

First, when we compare a small ANSP to a large ANSP on a ratio (say
support staff cost per flight hour controlled), we implicitly assume that
we can scale input and output proportionally. That is, we assume
constant returns to scale.

A second limitation of the KPI approach is that it typically involves only
partial evaluations. One KPI seldom reflects the purpose of the ANSP.
We may have multiple inputs and outputs and therefore form several
output-input ratios each of which provides an incomplete representation
of the ANSP. KPIs in this case do not account for the substitution
between inputs and between outputs.

A third limitation is that KPIs seldom capture the allocation properly. One
ANSP may be better in all conceivable sub-processes and still be inferior
by relying more on the relatively less efficient processes.

Model based

For these — and other — reasons, advanced benchmarking is model
based. We try to account for multiple effects that may interact in
complicated ways. To handle this, we use a systemic approach to the
ANSP. An ANSP is seen as a transformation of multiple resources into
multiple products and services. The transformation is affected by non-
controllable factors as well as by non-observable skills deployed and
efforts made within the organization. The idea is to measure the inputs,
outputs and non-controllable factors and hereby to evaluate the
managerial characteristics, like skills and effort, as illustrated in Figure
2-1 below. Note that in benchmarking, we usually think in economic
production terms, and we refer to different performance dimensions as
inputs and outputs. Non-controllable factors are also often thought of as
special non-controllable inputs and outputs depending on whether they
facilitate or complicate the production process.
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Figure 2-1 Systems view of the ANSP
Frontier methods
2.12 In the scientific literature, different state-of-the-art estimation techniques

have been presented. The best-practice methods go under the name of

frontier

analysis methods,

as they combine

the best-practice

observations to form a continuous frontier towards which any
observation can be gauged. A taxonomy of these methods is illustrated
in Table 2-1 below.

Deterministic

Stochastic

Parametric

Corrected Ordinary Least Squares

(COLS)

Aigner and Chu (1968), Lovell
(1993), Greene (1990, 2008)

Stochastic Frontier Analysis (SFA)

Aigner et al. (1977), Battese and
Coelli (1992), Coelli et al. (1998a)

Non-Parametric

Data Envelopment Analysis (DEA)
Charnes et al.(1978), Deprins et al.

(1984)

Stochastic Data Envelopment
Analysis (SDEA)

Land et al. (1993), Olesen and
Petersen (1995), Fethi et al. (2001)

Table 2-1 State-of-the-art frontier methods

2.13 The different estimation methods used for benchmarking are basically
suggestions for how to compare individual observations, as illustrated
by the dots in Figure 2-2 below, given the relationships between input
costs and outputs.
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Figure 2-2 Different estimation methods

2.14 The most frequently applied methods are Data Envelopment Analysis
(DEA) and Stochastic Frontier Analysis (SFA) methods (see Bogetoft
and Otto (2011) for a full review). Both approaches have their pros and
cons. In this project, we therefore apply both.

Efficiency measures

2.15 Once a benchmarking model linking costs to services, cost drivers and
prices has been established, the measurement of efficiency is simple in
principle. The cost efficiency of an ANSP can, for example, be defined

as:
Effici _ Minimal cost
fficiency = Actual costs
2.16 A cost efficiency measure of, for example, 90% suggests that the ANSP

could have produced the same services spending only 90% of its real
costs. In other words, there is a savings potential of 10% of the
benchmarked cost.

2.17 The relationship to potential savings is illustrated in Figure 2-3.
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Minimal

costs

Cost drivers

Figure 2-3 Efficiency measurement

The benchmarking process

The development of a regulatory benchmarking model based on
international comparisons is a considerable task due to the diversity of
the ANSPs involved and the procedural constraints. In this section, we
shall highlight some of the typical steps of a regulatory benchmarking
analysis and we shall discuss what creates a good benchmarking model.
Some of the important steps in a careful benchmarking exercise include
the following.

Choice of variable standardizations: Choice of accounting standards,
cost allocation rules, infout of scope rules, assets definitions, operating
standards etc. is necessary to ensure a good data set from ANSPs with
different internal practices.

Choice of variable aggregations: Choice of aggregation parameters, like
interest and inflation rates, for the calculation of standardized capital
costs, and the search for relevant combined cost drivers, using, for
example, engineering information, is necessary to reduce the
dimensionality of possibly relevant data.

Initial data cleaning: Data collection is an iterative process where
definitions are likely to be adjusted and refined and where collected data
are constantly monitored by comparing simple KPIs across ANSPs and
using more advanced econometric outlier detection methods.

Average-cost model specification: To complement expert and
engineering model results, econometric model specification methods



ACADEMIC GROUP ANSP BENCHMARKING 13

2.23

2.24

2.25

2.26

can be used to investigate which cost drivers / ANSP services best
explain average cost. This can be useful to estimate the variability of the
data, to validate the fit on the model specification to data and to
determine how many cost drivers are necessary.

Frontier model estimations: To determine the relevant best practice
model using DEA and SFA models, they must be estimated, evaluated
and tested on full-scale data sets. The starting point is the cost drivers
derived from the model specification stage, but the role and significance
of these cost drivers is further examined in the frontier models, and
alternative specifications derived from using alternative substitutes for
the cost drivers shall be investigated, taking into account the outlier
detecting mechanisms. In frontier models, special outlier criteria are
typically used. The aim is to protect the evaluated ANSPs against a
small number of special ANSPs, potentially deploying an incomparable
technology or serving an incomparable context, that have an excessive
influence on best practices. The two frontier criteria are often used in
regulatory benchmarking. One is based on the idea of super-efficiency
and says that a single ANSP that is doing very much better than all other
ANSPs is most likely an outlier. The other is based on the idea of the
average impact on the efficiency of the other ANSPs. An ANSP that has
a sizable impact on the efficiency of a large share of the other ANSPs
might also be considered an outlier.

Model validation: If data permit, it is also useful to undertake second
stage analyses to see is important variables have been excluded.
Similarly, second stage analyses can be useful to evaluate the impact
of possible facilitating or complicating factors that cannot be represented
by good so-called volume measures, e.g. ratio measures like the degree
of density of the airspace. With small samples and heterogeneous
ANSPs, it may be useful to include also a formal process of submitting,
evaluating and resubmitting claims of special circumstances that have
not been accounted for by the model.

It is worthwhile emphasizing that model development is not a linear
process but rather an iterative one. During the frontier model estimation,
for example, one may identify extreme observations that have resulted
from data error not captured by the initial data cleaning or the
econometric analyses.

Choosing a good model

The choice of a benchmarking model in a regulatory context is a multiple
criteria problem. There are several objectives, which may conflict with
one another.
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Conceptual: It is important that the model makes conceptual sense both
from a theoretical and a practical point of view. The interpretation must
be easy and the properties of the model must be natural. This
contributes to the acceptance of the model in the industry and provides
a safeguard against spurious models developed through data mining
and without much understanding of the industry. More precisely, this has
to do with the choice of outputs that are natural cost drivers and with
functional forms that, for example, have reasonable returns to scale and
curvature properties.

Statistical: It is, of course, also important to discipline the search of a
good model with classical statistical tests. We typically seek models that
have significant parameters of the right signs and that do not leave a
large unexplained variation. At the same time, there must be a proper
balance between the complexity of the model used and the sample size
on which we estimate it. In statistical approaches this is the question of
degrees of freedom. In a DEA context, there are less guidance although
some rules of rules-of-thumb has been proposed. One is to require a
sample of size of at the very least 3*(number of inputs + number of
outputs) and (number of inputs)*(number of outputs). With 30
observations, we should therefore have no more than 9 output
parameters. Experience suggests however that this number of output
parameters is exaggerated and may lead to models that cannot separate
well the efficient and the inefficient firms. Another informal heuristic is to
say that DEA models, since they are non-parametric, are extremely
flexible and that we therefore need at least enough observations to
estimate a translog cost function (Coelli, 2004). With two cost drivers, a
translog has 1+2+3 = 6 unknown parameters and with 3 cost drivers it
has 1+3+6 = 10 unknown parameters. As a measure of the statistical
goodness-of-fit of a model, we can for example use the sums of squared
inefficiencies, i.e. the sum of squared deviations from the full efficiency
score of 1. Formally, this “deviation” measure can be expressed as:

D=32L,A-EM))?

In this formula, n is the number of ANSPs and E(M)! is the efficiency of
ANSP! when evaluated in the model M. Clearly, small values of D are an
indication that the model M provides a good fit in the sense that the
ANSPs in general are evaluated to be close to fully efficient, which is the
natural null hypothesis.

Intuition and experience: Intuition and experience is a less stringent but
important safeguard against false model specifications and the over- or
underuse of data to draw false conclusions. It is important that the
models produce results that are not that different from the results one
would have found in other studies, countries or related industries. Of
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course, in the usage of such criteria, one also runs the risk of mistakes.
We may screen away extraordinary but true results (Type 1 error) and
we may go for a more common set of results based on false models
(Type 2 error). The intuition and experience must therefore be used with
caution.

Regulatory and pragmatic: The regulatory and pragmatic criteria calls
for conceptually sound, generally acceptable models as discussed
above. Also, the model will ideally be stable in the sense that it does not
generate too much fluctuation in the parameters or efficiency
evaluations from one year to the next. The regulatory perspective also
comes into the application of the model. If the model were not good, a
high-powered incentive scheme, for example, would not be attractive
since it would allocate too much risk to the ANSPs. Lastly, let us mention
the trivial but very important requirement to comply with the specific
conditions laid out in the regulatory directives of the individual
jurisdictions.

The multiple criteria nature of model choice is a challenge. When we
have multiple criteria, they may conflict, and this means that there is no
optimal model that dominates all other models. We have to make trade-
offs between different concerns to find a compromise model, to use the
language of multiple criteria decision making, and such trade-offs can
be challenged by the regulated parties.

Output or price based costs function

The focus of this project is on the estimation of best practice cost
functions and the use of these to estimate potential savings across
multiple ANSPs.

We can distinguish two types of cost functions.

Output based costs function explain cost directly as a function of the
services provided and the contexts in which they are provided:

Cost = f(Outputs,Context)

Price based cost functions explain costs by the outputs provided, the
prices of input factors, and the contexts:

Cost = f(Outputs, Input prices, Context)

Both approaches have their pros and cons in a practical, regulatory
context.
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The output based approach requires less data since it does not require
data on factor prices. Factors prices are often not observed directly but
constructed from allocated costs and measures of the physical inputs.
An advantage of this approach is therefore that it is also less dependent
on the cost allocation of different ANSPs and the use of these costs
together with the number of full time equivalents to construct the prices.

On the other hand, the output case approach also does not allow us to
take into account that the relative factor prices may be different across
ANSPs and that this may explain some of the cost differences. Note that
it is the relative price difference, not the general price levels (which we
corrected by inflation and PPP as described below) that matters. If, for
example, the cost of capital and the cost of labour are very different
across the ANSPs, we would expect them to use different factor
combinations — one relying more on labour and the other more on capital
inputs. The consequence of ignoring such differences in price relations
might be that some ANSPs are held responsible for aspects of the
environment that they cannot entirely control, namely the relative prices
of factor input. For these reasons, the output based cost function may
potentially lead to harsher evaluations.

Since both approaches clearly have pros and cons, we have chosen in
this project to estimate the output based cost function using DEA, and
the price based cost function using SFA. In this way, we obtain intervals
of efficiency scores for each ANSP which can capture some of the
methodological uncertainty of any benchmarking study.

Alternative modelling approaches

In Table 2-2 below we summarize the different modelling approaches
we have considered.
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Est. Method

A: Direct cost estimation DEA and SFA Totex
Totex target = func(Outputs) Outputs

B: Cost estimation via DEA and SFA Totex split

optimization of cost (Labor Cost, Material Cost, Capex) = func(Outputs) Outputs

shares definestechnology T
Totex target
=min Labor Cost + Material Cost +
CapexinT
C: Cost estimation DEA and SFA Physical inputs
based on technology (Labor, Material, Capital) = func(Outputs) defines Totex
and prices technology T Prices
Totex target

2.42

2.43

2.44

2.45

2.46

=min Labor*PriceLabor + Materials*PriceMaterials +
Capital*PriceCapital in T

D: The economist notion SFA Totex
of cost function Totex target = func(Outputs,Prices) Prices

Table 2-2 Alternative models of the cost structure

The different approaches to modelling a cost structure, A-D, is likely to
lead to different saving potentials.

Conceptually, one might see the first, A, as the most favorable to the
companies and the last, D, as the harshest approach.

In A, no-one may have picked optimal combination of production factors,
i.e. no-one may have been technically and allocatively efficient. Hence
estimated best practice costs may be too high. If for example all firms
tend to spend too much on capital equipment given then price ratio
between labour and capital, we will not see this in A when we estimate
best practice.

In D, we presume that all firms minimize costs and pick the best
combination given prices and underlying unknown technology. Hence
we do in theory keep the firms responsible for not only being technical
efficiency, i.e. for using the least possible of the production factors. We
also require that they are allocatively efficient in the sense of picking the
right cost-minimizing mix of production factors given the factor prices.

In practice, however, this ranking may not hold. There are several
reasons for this. One of the reasons is that prices are not exogenously
given competitive prices as it is implicitly assumed in the D approach.
Rather, in our study, they are calculated based on information of cost
shares and the use of physical inputs, cf. below. Hence a firm having a
small book value, for example, will get a high capital price since
depreciation is relatively large compared to the book value, and a firm
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having a large labour force will for the given labour costs have a small
estimated labour price. In other words, the calculated prices will to some
degree rationalize the actual input choices of the firms, and hereby make
the evaluations fall short of requiring allocative efficiency.

Moreover, the DEA and SFA estimates will give different results by the
nature of the two approaches. DEA has a more flexible mean structure
tending to make DEA less harsh, but on the other hand SFA allows for
noise in the outcome and does not interpret all model deviations as
inefficiency, which tends to make SFA less harsh.

In summary, we cannot ex ante rank the different approaches A-D using
DEA and SFA. We can however see the spectrum of approaches as
providing an idea of the possible variation in outcomes that result from
best practice methods and which should be taken into account in
regulatory applications of the results.

Combining DEA and SFA results

The DEA and SFA results may be combined in different ways and there
are examples of all types of aggregation applied in different regulatory
practices across Europe.

Interval estimates could be created from the efficiency score estimated
by each of the two methods, (DEA, SFA). It would create a hopefully
small band from which the regulator could choose an appropriate level
or bound on the individual ANSP price.

The minimum efficiency score, min(DEA,SFA), would be the toughest
estimate of potential cost reduction identified by at least one of the
models results.

The maximum efficiency score between the results of the two models,
max(DEA,SFA), could be referred to as the benefit of the doubt
regulatory approach. This would lead to the lowest possible cost
reductions.

Calculating the average score of the results of the two models,
mean(DEA,SFA), would balance the pros and cons of each model
equally. This would lead to results similar to that of the interval
estimates.

Predicting best practice cost levels

As part of the applications, regulators may expect changes in the supply
of services, and be interested in best practice costs levels in one or more
future scenarios.
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If we assume that good predictions of future service levels are available
as yFUTURE sych predictions can be established by simply inserting the
projected service levels in the estimated cost function.

In the DEA (A) approach and the SFA (A) approach where no prices are
applied, the formula for predicted future costs is:

TOtexFUTURE — fDEA (yFUTURE)

In the SFA (D) approach, the prediction depends not only on future
outputs, yFUTURE 'put also on future factor prices, pfUTURE The predicted
future best practice costs are:

FUTURE — fSFA(D)(yFUTURE FUTURE)
H

Totex D
The best practice costs functions, fPE4 and f5F4, are estimated based
on best practice historically, which we can denote NOW to be
distinguished from FUTURE.

The advantage of these approaches is that they take into account the
structure of the estimated cost functions. When the cost functions are
not linear, it does not make conceptual sense to summarize them as for
example an expected cost per output. The cost per unit of one output
will vary with the scale of the firms as well as with the mix of services to
be produced.

The above approaches could be refined by including also a general
improvement of best practices from the last year of data used in the
estimations, i.e. NOW, till the year of the projected future demand, i.e.
FUTURE. In theory, one could even make such general productivity
improvements firm specific using for example a Malmquist approach.

This would lead to predictions using formula like

FUTURE — fSFA(yFUTURE FUTURE)(l _ TP)FUTURE—NOW

Totex P

TOte.X'FUTURE — fDEA(yFUTURE) (1 _ TP)FUTURE—NOW

Here, TP measures the rate of technological progress, i.e. the yearly
improvement in best practice. This could for example be 1% in an
industry with heavy infrastructure investments, and 3-4% in a more
rapidly changeable service sector.
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Data and data standardizations

In this chapter, we will briefly discuss the available data, including the
cost measures, the main service dimensions and the main contextual
variables, on which our models rely.

The collection, cleaning and to a large extent the standardization of data
IS not part of this project. It relies principally on ATM Cost Effectiveness
(ACE) data that are collected and validated by the Performance Review
Unit (PRU) of Eurocontrol in cooperation with ANSPs. The data is
publicly available on the Eurocontrol website?.

To measure the inputs or resource usage of entities like an ANSP, it is
common to use monetary cost values.

Moreover, in regulation, it is common to recommend the so-called Totex
benchmarking approach.

Totex = Opex + Capex

Totex represents the total expenditures and it is the sum of the operating
expenditure, Opex, and capital expenditure, Capex. Economists think of
Opex as an indication of the variable costs, VC, and of Capex as an
indication of the fixed costs, FC.

Using Totex as the input of our system model, the ANSPs are held
responsible for the task of finding the optimal balance between operating
and capital expenses. Of course, regulatory usage and regulatory
history may call for other approaches. If Capex has been partly dictated
or recognized by a regulator, for example, it may sometimes be
interested to focus on Opex efficiency alone. Ideally, in such cases, one
should still include Capex as a separate, non-controllable input to make
sure that possible trade-offs between Opex and Capex are taken into
account.

Unfortunately, raw accounting data from the ANSPs might not be ideal,
since depreciation periods differ, rules for activations vary, the scope of
the accounting differs, etc. Considerable cost standardization is
therefore needed before the accounting costs can be compared.

As explained above, the data standardizations are largely the
responsibility of the PRU. However, we have introduced additional

2 http://www.eurocontrol.int/prc/publications
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standardization of cost to make these comparable across service
providers and to calculate appropriate production factor prices.

Standardization ensures that the econometric cost function is
homogeneous and in alignment with the underlying economic theory on
cost functions (Coelli et al., 2005). In this process, we have relied on a
series of indices, including purchase power parity, exchange rates for
countries outside the euro, inflation rates, the producer price index and
the cost of borrowing index.

Purchase Power Parity (PPP) indicates how many currency units a
particular quantity of goods and services costs in different countries.
PPPs can be used as currency conversion rates to convert expenditures
expressed in national currencies into an artificial common currency thus
eliminating the effect of price level differences across countries.

Exchange Rates are needed to make cross-country comparisons where
purchase price parity is not applied and countries utilise different
currencies. Since 19 of the 28 EU countries are within the euro zone,
the remainder will require the data to be PPPd or the exchange rate
needs to be applied.

Inflation rates are necessary to account for time differences, i.e. to make
cost data from different periods comparable. The PRU applies the
historical inflation figures from EUROSTAT? or from the International
Monetary Fund*, for countries not included within the Eurostat database.
In this analysis, the base year is 2016 and the inflation rates are applied
to earlier years accordingly.

In general, producer price indices measure the average movements of
prices paid by domestic producers for goods and services sold on the
domestic or/and on the export markets between one time period and
another. The Producer Price Index is used to represent the cost of
purchasing materials and supplies from local producers.

The Capital Goods Price Index is based on the cost of borrowing
indicator which is constructed following the European Commission’s
Joint Research Center guidelines (JRC, 2008). We focus on the cost of
loans as a proxy for the ANSP cost of capital. Since the ANSPs are
regulated entities subject to price-cap regulation, in practice the cost of
equities is generally in line with the cost of loans. We collect the cost of
borrowing from statistics publicly available at the European Central
Bank. We use the interest rate data on “new business” to non-financial

s http://ec.europa.eu/eurostat/web/main/home
«http://www.imf.org/external/pubs/ft/weo/2017/01/weodata/index.aspx


http://ec.europa.eu/eurostat/web/main/home
http://www.imf.org/external/pubs/ft/weo/2017/01/weodata/index.aspx

ACADEMIC GROUP ANSP BENCHMARKING 22

3.15

3.16

3.17

3.18

3.19

3.20

3.21

corporations over 5 years initial rate fixation. The index is inflated to
2016 by using the Euro area inflation rate source from EUROSTAT.

Consequently, we apply a cost of capital that is in line with
recommendations from the theory (Coelli et al., 2005).

Physical production factors

In the estimation of price-based cost functions, we also include
measures of the physical amount of different production factors utilized
by the ANSPs, as well as the factor prices.

In general, we can think of the production factors as the set of resources
required for the generation of the services provided, often classified into
four specific groups; land (including all natural resources), labour
(including all human resources), capital (including all man-made
resources), and management (which brings all the previous resources
together for production).

Capital is estimated according to the net book value as reported by
ANSPs and assembled in the ACE database. The net book value of the
equipment and other capital assets utilized for en-route operations has
been separated from the terminal operations. This is the only information
that is not published openly in the ACE reports but was provided to the
group for the purposes of this analysis.

Two categories of staff work for the air navigation service providers,
namely air traffic controllers (ATCOs) and support staff. Air traffic
controllers’ hours and full time equivalent numbers are reported
separately for en-route and terminal activities.

Support staff, which consist of many types of employees, ranging from
technicians to meteorologists to management, are reported in full time
equivalents but only on a gate-to-gate basis. Consequently, it is not
possible to separate the support staff between en-route and terminal
activities.

Pricing factors

The price of capital is based on the net book value, cost of capital and
depreciation costs as recorded in the ACE database, and the capital
goods price index based on the cost of borrowing as described in
paragraph 3.14. The price of capital is created separately for en-route
and terminal operations using net book value data for each operation
(this is the only information that is not published openly in the ACE
reports but was provided to the group for the purposes of this analysis).
The price of capital is measured as follows:
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Depreciation Costs + Cost of Capital

NBV
Cost of Borrowing Index

Price of Capital =

The price of staff is based on the total cost of labour divided by ATCO
hours, eith er en-route or terminal, since it was not possible to separate
such costs across ATCOs and support staff individually.

Price of Staff = ( Cost of Stafs )

ATCOs hours in operation

The price of energy, supplies, materials and outsourcing are determined
by the Member States’ producer price index (PPIl), as published in
Eurostat.

Service measures (Outputs)

ANSP output involves the safe separation of flights. The network
manager estimates the total IFR flight hours controlled according to the
entry and exit times of an aircraft through the specific airspace. The en-
route movements are controlled through air control and approach
centers.

The terminal activities are undertaken in airport towers and terminal
approach centers, depending on the complexity of the airspace. The
terminal output is measured in IFR flight movements.

Contextual characteristics (Exogenous)

Contextual variables in general refer to the environment in which the
ANSP must work but over which the management has little to no control.
In the case of ANSPs, this refers to seasonality and complexity for the
most part.

To capture the workload provided by the ANSPs, it is necessary to also
consider the complexity of the flight paths being handled. The ACE
working group on complexity produced a definition in 2006 and the data
has been subsequently estimated on an annual basis. The reason for
creating the index was precisely to enable such benchmarking as
reported here. The complexity index is created based on four indices as
depicted in Table 3-1.
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Complexity Dimension | Indicator Description

Traffic density

Adjusted density A measure of the potential number of
interactions between aircraft in a given
volume of airspace.

Traffic in evolution Potential vertical interactions Captures the potential interactions

(VDIF) between climbing, cruising and
descending aircraft.

Flow structure

Potential horizontal Provides a measure of the potential
interactions (HDIF) interactions based on the aircraft
headings.

Traffic mix

Potential speed interactions Assesses the potential interactions based
(SDIF) on the aircraft speeds.

3.28

3.29

3.30

3.31

Table 3-1: Four Indices of Complexity

To create a single index, the three potential interactions are summed
and subsequently multiplied with the adjusted density.

Although the complexity index is mostly describing the en-route traffic
control workload, it also includes an element relevant to terminal
activities, in particular traffic evolution. Consequently the index has been
applied to both en-route and terminal analysis.

Variability of the traffic load over time is also likely to impact the relative
cost base for the ANSPs. Variability is computed by dividing traffic levels
in the peak month by the average monthly traffic. Variability is likely to
impact overall annual costs if it is not possible to employ ATCOs on a
seasonal basis thus leading to higher annual costs as compared to an
ANSP with similar output spread evenly over the year.

Complexity and Variability are characteristics of the air traffic controlled
by the ANSPs and can be included in the benchmarking analysis in
different ways. Most commonly, they are included as explanatory
variables in the inefficiency model (parametrizing the inefficiency
distribution in SFA or used as explanatory variables in second stage
analysis in DEA) or they are used to construct additional volume based
output measures that can be thought of directly as outputs along
TotallFRhours and TotallFRmovements. To enable the latter approach
in the DEA models, we have constructed the following additional
variables:
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e Complexity_Volume_ IFRhours= Complexity* TotallFRhours

e Variability_Volume_IFRhours= Variability* TotallFRhours

o Complexity Volume_IFRmovements= Complexity* TotallFRmovements
¢ Variability Volume_ IFRmovements= Variability* TotallFRmovements

One can think of the variability volume measures, for example, as
measures of the capacity of the individual ANSPs. Capacity to handle a
large traffic load is an important service and therefore a natural output
(in energy network companies, we similarly find that peak-load is a
natural cost driver— indeed capacity is a more important cost driver in
general that the actual flow of energy).

The size of the airspace may also be considered as a contextual variable
over which the ANSPs have no control. An alternative measure of
capacity may be the number of area control sectors open at maximum
configuration, which is relevant for the en-route activities. This variable
may also be managed to some extent, as with variability.

More information about the outputs and context variables

Table 3-1 summarizes the average data over time, including the
contextual variables, comprising variability, complexity and the
maximum number of sectors. All cost data is presented in standardized
2016 euro values.

As can be seen in Figure 3-2, complexity has grown the most over the
decade by around 22% alongside growth in output flight hours controlled
of around 11%. Terminal IFR movements decreased over the period by
around 5%.
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Figure 3-2: Growth in Output and Contextual Variables from 2006 to 2016
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
NBV (Euros) 167,856,120 | 165,154,414 | 160,200,592 | 153,159,142 | 149,221,868 | 148,849,798 | 146,388,474 | 142,868,803 | 143,755439 | 139,274,876 | 139,496,847
Staff-costs (Euros) | 118,024,620 | 124,570,102 | 127,762,243 | 128,879,675 | 123,791,442 | 123,851,978 | 125,223,791 | 124,362,337 | 125,206,655 | 127,525,530 | 127,091,335
Eroute | Nostaff-costs (Euros) | 34347.208 | 33855872 | 31862276 | 33029001 | 31665598 | 32.610,898 | 30921362 | 29865333 | 29996630 | 30,042,340 | 28,457,799
Cost of capital (Euros) | 12,220,599 | 12,504,408 | 12,442,102 | 12,259,086 | 11,033,004 | 11,920,567 | 12,748,718 | 11,996,014 | 12,482,269 | 12,786,070 | 12,142,084
Depreciation (Euros) | 25,721,855 | 24755421 | 22,632,517 | 23,851,851 | 23,974,857 | 23,628,625 | 23505642 | 22,876,505 | 23,440,384 | 23,749,882 | 23,829,115
Flight hours controlled | 408,826 432,827 440,639 408,111 414,966 429,383 419,732 418,474 429,970 438,333 453,326
NBV (Euros) 84,877,304 | 82,356,262 | 63,736,015 | 69,280,928 | 68,893,993 | 60,757,827 | 56,782,361 | 53,350,460 | 49,390,353 | 47,662,115 | 45,174,730
Staff-costs (Euros) | 40,524,654 | 44,636,555 | 43,836,726 | 44,130,451 | 39,458,645 | 39,570,081 | 40,207,416 | 38,531,869 | 38,175,690 | 39,630,905 | 38,666,396
R Non-staff-costs (Euros) | 10,142,549 | 11,208,383 | 10,312,589 | 10,688,962 | 11,253,831 | 10,940,422 | 9,786,282 | 9,177,079 | 9625431 | 9,020,058 | 8,763,518
Cost of capital (Euros) | 2,987,467 | 3154435 | 3260512 | 3145377 | 2,789,870 | 2,790,252 | 2,307,203 | 2,229,887 | 2,262,883 | 2,400,838 | 2,381,154
Depreciation (Euros) | 6,024,274 | 6,458,495 | 6,246,094 | 7,000,902 | 6,815982 | 6,456,858 | 5721002 | 5643,075 | 5433931 | 5154351 | 4,715202
IFR movements 505,682 526,938 516,438 477,990 473,878 488,846 473,930 458,906 465,286 471,641 478,184
Variability 1.200 1.191 1.195 1.198 1.218 1.204 1.220 1.232 1.248 1.232 1.228
Complexity 4.683 4.920 5.158 4.922 5.069 5.180 5.133 5.216 5.470 5.654 5.707
MaXim;?CPOUrrsnber of 19.700 20.200 20.367 20.067 20.200 21.133 21.367 21.400 21.200 21.533 22.100

Table 3-1: Average Cost and Production Variables from 2006 to 2016
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The relative percentages of the four cost categories have remained
relatively constant over the decade analyzed.

When analyzing en-route data, staff costs are around 63%, operating
costs are 19%, cost of capital is 6% and depreciation is 12%.

When analyzing terminal data, staff costs are around 69%, operating
costs are 17%, cost of capital is 4% and depreciation is 10%.

We note that some of the data shows substantial spikes, for the most
part in the capital related expenditures as demonstrated in some
examples in Table 3.2.

Finland en-route NBV
2013 20,887,714
2014 16,831,462
2015 23,488,580

Finland terminal NBV
2006 656,558,404
2007 663,107,180
2008 40,579,390
2009 5,037,920
2010 43,692,932

Greece en-route NBV
2013 100,422,098
2014 98,998,900
2015 5,250,129
2016 5,849,108

Netherlands en-route staff cost
2008 82,806,449
2009 101,582,552
2010 84,097,171
UK en-route non staff operating cost
2013 112,197,243
2014 97,574,282
2015 117,241,471

Poland en-route cost of capital
2013 4,674,790
2014 474,688
2015 9,936,848
2016 11,086,963

Table 3-2: Data issues (2016 standardized values)
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4. DEA and SFA models
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Data Envelopment Analysis

The non-parametric DEA approach uses linear programming to evaluate
the performance of the firms or organization.

In the DEA literature is common to refer to the evaluated as Decision
Making Units (DMUs). A DMU can be an observation of (inputs, outputs)
for a firm at a given time (cross section) or at other time periods (panel
data).

DEA does not use maximum likelihood estimation, as it is common in
more statistical approaches, to determine the underlying model. Instead,
DEA is based on the idea of minimal extrapolation.

In the DEA, the estimate of the technology T, which is the empirical
reference technology, is constructed as the smallest set of input-output
combinations that contains data from the different DMUs, (x,y¥), k =
1,...,K and satisfies certain technological assumptions specific to the
given approach.

By constructing the smallest set that contains the actual observations,
the method extrapolates the least. As long as the true technology T
satisfies the regularity properties, the approximation T* that we develop
will be a subset of the true technology. We refer to this as an inner
approximation of the technology. By choosing the smallest set, we are
making a cautious or conservative estimate of the technology set and
therefore, also a cautious or conservative estimate of the loss due to
inefficiency. We can say also that the approximation is based on best
practices rather than on speculations as to what may be technologically
feasible. A popular understanding of the property is also that we
estimate the technology so as to present the evaluated units in the best
possible light — or, as consultants might put it, “we bend ourselves
backwards to make you look as good as possible”.

Apart from the sales talk, it is important to understand that DEA is based
on the implicit assumption that there is no noise in the data. If the data
are somewhat random — due to exogenous chocks, bad reporting
practice or ambiguity in accounting practices, for example — the result
may not be an inner approximation of the true possibilities. If there is
considerable noise in the data, one can even argue that firms may be
evaluated against the hardest possible standards (possibly the luckiest
firms) and not against a cautious standard.
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The basic DEA models mainly differ in the assumptions that they make
about the technology T. The most important assumptions are:

r

A1l Free disposability: We can produce less with more.ist!

Rl

A2 Convexity: A weighted average of feasible production plans is
feasible. it

(Lo

A3 Scaling: Production can possibly be scaled.

A4 Additivity, replicability: The sum of two feasible production
plans is feasible.

Returns to scale

In words, these assumptions about returns to scale can be interpreted
as follows:

Constant Return to Scale (CRS) means that we do not believe
there to be significant disadvantage of being small or large

Non-Increasing Return to Scale (NIRS), sometimes referred to as
Decreasing Return to Scale (DRS), means that there may be
disadvantages of being large but no disadvantages of being small

Non-Decreasing Return to Scale (NDRS), sometimes referred to
Increasing Return to Scale (IRS), means that there may be
disadvantages of being small but no disadvantages of being large

Variable Return to Scale (VRS) means that there are likely
disadvantages of being too small and too large.

Free Disposability Hull (FDH) means that we make no ex ante
assumptions about the impact on size and that we even do not
assume that we can make linear interpolation (convex
combinations) between two points

Free Replicability Hull (FRH) is like FDH except that we also
assume that we can combine (replicate) individual units, such that
we can compare for example a large TSO with the sum of a small
and a medium sized TSO.

The strongest assumption is CRS. It leads to the lowest efficiency
scores.

Conceptual reasoning as well as statistical tests can be used to decide
what the correct scale assumption is.
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Given the size of the data set, and our aim to discriminate among
efficient and inefficient firms, it is useful to assume convexity as in CRS,
NIRS, NDRS or VRS. Convexity is an assumption that complies with
standard cost and production theory and that is also invoked in most
parametric approaches.

Conceptually, one can also argue that it is difficult to justify
disadvantages of being large since reorganization can in such cases
often be introduced to avoid the problems of coordination in large
entities. In the case of air control, this is less obvious, since flight paths
have to be coordinated among different parts of the European sky.

In our case, therefore, we have largely relied on statistical testing to
decide on the proper assumption. Starting from VRS, we have tested if
it is acceptable to assume NDRS or even CRS, and in we have found
that this is the case. Our maintained assumptions in the DEA models is
therefore CRS

Outliers

Outlier analysis consists of screening extreme observations to make
sure that they can actually be considered natural parts of the data set,
i.e. that the data has been generated by the data generation process.

Depending on the approach chosen (DEA or SFA), outliers may have
different impact. In DEA, particular emphasis is put on the quality of
observations that define best practice. In SFA, outliers may distort the
estimation of the curvature and affect the magnitude of the idiosyncratic
error term.

In non-parametric methods, extreme observations are such that
dominate a large part of the sample directly or through convex
combinations. Usually, if erroneous, they are fairly few and may be
detected different programming and statistical methods. The outliers are
then systematically reviewed in all input and output dimensions to verify
whether the observations are attached with errors in data. The
occurrence and impact of outliers in non-parametric settings in mitigated
with the enlargement of the sample size.

There are several possible outlier detection techniques that can be
relevant for DEA model, c.f. also Bogetoft and Otto (2011) and Wilson
(1993).

Here we will restrict attention to the techniques that have commonly
been used in regulatory benchmarking. We will draw on our experience
from EuropeanDistribution System Operator (DSO) benchmarking.
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One approach is to identify the number of times a DMU serves as a peer
unit for other DMUSs, peer counting. If a DMU is the peer for an extreme
number of units, it is either a very efficient units — or there may be some
mistakes in the reported numbers.

The other approach is to investigate the impact on specific firms from
sequentially eliminating DMUs using the notion of efficiency ladders. If
the elimination of one DMU leads to a significant increase in the
efficiency of sufficiently number of units, there are again good reasons
to check this unit more carefully.

Thirdly, one can use shell analysis where the idea is to study the impact
of groups of DMU, like the ones in the first shell, the second shell etc,
c.f. also Agrell and Bogetoft (2000). As the cost function is peeled this
way, one shall check the shells with a significant impact on efficiency
while there is less reason to continue the controls when the average
efficiency is only improving slightly when a shell is eliminated. The
Danish water regulation is using a peeling approach by simply
eliminating the first shell before doing the estimation that counts.

A fourth criterion, and one of the criteria used in the German regulation,
is that a single DSO should not have a too large of an impact on the
average efficiency. We can operationalize the average efficiency impact
criterion analogous to the tests used above. Specifically, let | be the set
of n DSO is the data set and i be a potential outlier. Also let E(k,I) be the
efficiency of k when all DSO are used to estimate the technology and let
E(k;I\i) be the efficiency when DSO i does not enter the estimation. We
can therefore evaluate the impact on the average efficiency by:

(E(k;I\i) — 1)2
£ (E(k; 1) — 1)

Small values of this as evaluated in a F(n-1,n-1) distribution, c.f.
Banker(1996), will be an indication that i is an outlier.

The last and final criterion is the extreme super efficiency criterion. The
idea is to eliminate DSO that are far outside the technology spanned by
the other DSOs. Again, this is used in the German regulation where the
criteria is operationalizes as follows: A DSO 1 is classified as an outlier
if:

E(i;I\i) > q(0.75) + 1.5-[q(0.75) — q(0.25)]

where q(a) is the a fractile of the distribution of super-efficiencies, such
that e.g. q(0.75) is the super-efficiency value that 75% has a value

below. We see that the difference q(0.75)-q(0.25) is also what is
sometimes called the Inner Quartile Range IQR and the cut-off is what
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is sometimes called the inner fence in box plots. To get an idea of the
cut-off levels in a standard normal distribution, N(0,1), see c.f. Figure 4-1
below

IQR
Q1 Q3
QL - 1.5 x IQR Q3 + 1.5 x IQR

: Median

-4¢ -3¢, -20 ~-lo. 0o lo 20 30 40

—2.6980 —0.67450 0.67450 2.6980
) 24.65% . 50%  24.65%
-4¢ -3¢ -20 -1lo Oc 1o 20 30 40

15.73%  68.27%  15.73%
-4 -3¢ -20 -lo 0o lo 20 30 4o

Figure 4-1 An outlier criterion
Reference set

A DMU can be an observation of (inputs, outputs) for a firm at a given
time (cross section) or at other time periods (panel data). When panel
data is availed, there are several possibilities to construct the reference
set used to estimate the technology.

One possibility is to pool the data from all periods.

In that case, care should be taken to correct the economic measures for
price changes during the period.

The advantage of using yearly data as different observation is that more
data points are available to support the estimation.

From a theoretical perspective, a disadvantage of using yearly data in
this way is that firms may end up “competing” against themselves in
previous years, which in turn leads to so-called Ratchet effects, i.e. firms
avoid performing too well in some years not to face too harsh conditions
in the future. In practice this is probably not a significant issue, except
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perhaps for the most efficient DSOs that have very peculiar
combinations of cost drivers.

From an applied perspective, a much more relevant disadvantage of the
use of yearly data is that yearly data may be more noisy than average
data. This happens for example if there are difficulties getting the
periodization of costs entirely right.

In summary, it is important to understand that the estimation of a DEA
model on several years of data does not come with the same benefits
as in the SFA approach.

Another possibility is to analysis year by year, i.e. to only compare a
DMU in one year with the other DMUs from that year. This is the
approach taken here since we avoid the problem of mistakes and noise
in data accumulating by the minimal costs decreasing monotonously in
the size of the reference set.

There are other approaches as well.

One can for example take as observations the average of a DMUs data
from the last three year. This avoids some of the problems by noise in
the data in a given year, but obviously raises the question of which years
to average and how much weight to put on recent compared to more
distant years.

Also, and this is the approach we have used, one can do yearly analysis
but investigate how the efficiency of the DMUs varies from one year to
the next.

En-route and Terminal model specifications

Using the modelling principles above, we have determined our proposed
En-route and Terminal models. The model specifications are
summarized in Table 4-1 and Table 4-2 below.
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Model ACC base model

Inputs

TC_ACC Cost efficiency estimated on Totex PPP corrected
Outputs

Flight_hours_controlled_ACC Total flight hours

Complexity_Volume_hours Complexity* Flight_hours_controlled_ACC
Variability_Volume_hours Variability* Flight_hours_controlled_ACC
Sectors Number of Sectors

Reference set
Data from same year Yearly analysis 2006-2016

Estimation approach
Constant returns to scale
Outliers eliminated using super-efficiency and average

dea_crs_ex_output impact criteria

Table 4-1 En-route model in DEA runs

In the en-route model (ACC), we have four cost drivers. The first,
Flight_hours_controlled_ACC, is a direct measure of the workload, the
second, Complexity_Volume_hours, is a workload measure that is
corrected for the complexity of controlling, the third,
Variability_Volume_hours, is a measure of the capacity for handling a
large workload at least temporarily, and the fourth, Sectors, again is a
measure of the size of the operation and the actual and potential
workload.
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Model TER base model

Inputs

TC_TER Cost efficiency estimated on Totex PPP corrected
Outputs

IFR_mov_TER Number of movements

Complexity_Volume_Mov
Variability_Volume_Mov

Reference set
Data from same year

Estimation approach

Complexity* IFR_mov_TER
Variability* IFR_mov_TER

Yearly analysis 2006-2016

Constant returns to scale
Outliers eliminated using super-efficiency and average
impact criteria

dea_crs_ex_output

Table 4-2 TER model in DEA runs

In the TERminal model, we have used similar cost drivers as in the En-
route model, except that Sectors have not been introduced. The
relevance of Variability is again to account for peak workload. The
complexity measure contains a part that is related to airport movements,
but is of course less directly relevant here than in the enroute model.

Indeed, as our results will show, the rationale for the TERminal model is
weaker that the rationale for the en-route model. This explains also why
the DEA and SFA models give more deviant results in the TERminal
case compared to the en-route case. When the cost drivers are less
obvious, a DEA approach will tend to interpret the deviations as large
inefficiencies, while a SFA approach will interpret the outcome as
governed by a large amount of noise.

Stochastic Frontier Analysis

The econometric approach to efficiency estimation is concerned with
measuring the performance of firms and institutions in converting inputs
to outputs. SFA may be applied to either cross-sectional or panel data
at the firm level in order to estimate the relationship between inputs and
outputs whilst accounting for exogenous factors. The latter may impact
the production relationship however the management of the firm in
general may have little to no control.
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4.42

4.43

A firm is deemed cost efficient if it minimizes the total production cost of
a given output, which requires technical efficiency but also a mix of
inputs that makes more intensive use of the relatively cheaper variables.
We apply a translog functions. Due to the existence of panel data and
potential externalities, we apply the Battese and Coelli (1995) model,
which accounts for potential heteroscedasticity in the decomposed error
terms and the estimation of the impact of externalities on the inefficiency
distribution. Consequently, the Battese and Coelli model considers
environmental variables twice if necessary, namely within the cost
function and as an explanation for the average level of inefficiencies
(Hattori, 2002).

From the dataset, we apply the model to the set of variables described
in Table 4-3, where the cost of operation index equals the Producer price
index.

Total costs and prices are normalised by one of the prices in order to
ensure homogeneity condition.

Dependent Variable

total cost
producer price index

Independent Inputs

Output

total IFR flight hours controlled (en-route) and total IFR airport movements
(terminal)

Labour price

total staff cost/ATCO hours
producer price index

Capital price

(depreciation cost + cost of capital ) / (NBV/ capital goods price index)
producer price index

Environmental Variables

Airspace

characteristics

seasonality, complexity, maximum number of sectors, time trend

4.44

4.45

Table 4-3 Variables in stochastic frontier cost function

Given the translog nature of the analysis, which ensures a reasonably
flexible cost function, all of the independent inputs are also multiplied by
themselves and between each other.

We implement the estimations in STATA, using the tailor-made
SFPANEL package (Belotti et al., 2012). We tested a number of
alternative specifications including SFA with time decay in the
inefficiency term (Battese and Coelli, 1992) and SFA with exogenous
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4.46

4.47

drivers affecting the distribution of the inefficiency term (Battese and
Coelli, 1995). We present the results of Battese and Coelli (1995)
because this model provided the most reasonable estimations according
to the log likelihood estimates.

The SFA model applied to en-route air traffic control provision is
presented in equations 4-1. The producer price index is referred to as
PPI.

| (Total Costit)
PPI;;

= By + B1 IN(IFR flight hours;;) + B, In (

Capital Price;;

Labor Pricel-t>
PPI;;

1
+ S5 1n ( ) + ﬁ4§In(IFR flight hours;;) IN(IFR flight hours;;)

PPI;;
1 /Labor Price; Labor Price;;
#hagh( Jin( )
2 PPI;; PPI;;
1 /Capital Price;; Capital Price;; 4.1
#hagh( )i )
2 PPI;; PPI;
) Labor Price;;
+ B, In(IFR flight hours;;) In <7>
PPI;;
) Capital Price;;
+ Bg IN(IFR flight hours;) In <—>
PPI;;

i (LaborPriceit) (Capitalpriceit)+ In(Complexity,,)
Ps PPI, PPI;, fi InfComplexttyi

+ B,, In(Variability;.) + B,3 In(Sectors;.) + B3 In(time,) B,z + vy + Uyt
where v;,~N(0,52) and u,,~N(8,In(complexity); +T;.. 62)

The results of the stochastic cost function models with respect to en-
route services are presented in Table 4-4. Two models are analysed,
namely without and with a time trend variable that estimates market level
changes. All cost elements are PPPd to allow for international
comparisons. All variables are logarithm transformed and normalized by
the geometric mean.
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En-route

Variable

Model (i)

Model (ii)

Output

0.44 (0.04) ***

0.44 (0.04) ***

Staff Prices

0.60 (0.03) ***

0.60 (0.03) ***

Capital input price

0.18 (0.02) ***

0.14 (0.02) ***

Staff Prices?

0.49 (0.08) ***

0.50 (0.08) ***

Capital input price?

0.12 (0.06) **

0.12 (0.06) **

Output?

0.11 (0.02) ***

0.11 (0.02) ***

Staff Prices * Capital input price

-0.13 (0.04) ***

-0.13 (0.04) ***

Output* Staff Prices

-0.20 (0.03) ***

-0.18 (0.03) ***

Output* Capital input price

0.11 (0.02) ***

0.11 (0.02) ***

Complexity | 0.55 (0.16) *** | 0.58 (0.17) ***
Sectors | 0.53 (0.04) ** | 0.54 (0.05) ***
Variability | 2.14 (0.29) ** | 2.47 (0.30) ***
Time -0.01 (0.00) **
Constant | -3.73 (0.40) ** | -3.97 (0.39) ***

Inefficiency (m)

Complexity

-0.81 (0.15) ***

-0.81 (0.17) ***

Constant

0.89 (0.21) ***

0.93 (0.22) ***

ou (inefficiency error component)

0.20 (0.01) ***

0.19 (0.01) ***

oy (stochastic noise error component)

0.11 (0.02) ***

0.11 (0.02) ***

A

1.73 (0.03) ***

1.69 (0.03) ***

Log-Likelihood

59.6

63.4

Table 4-4 Results of the en-route stochastic cost function

Notes: The analysis is based on 327 observations. Indicators: *significant at the 10 per cent confidence level; **
significant at 5 per cent confidence level; *** significant at 1 per cent confidence level.

4.48

4.49

The results of the two models are consistent and the three independent
variables, namely output, staff and capital, are positive and significant
as expected. In other words, the higher any of these three elements, the
higher is the expected total cost.

Time is both significant and negative in model (ii). This indicates that
there has been a slight decrease in costs over the timeframe analysed.
Given the higher log-likelihood, we analyse the efficiency results of
model (ii).
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4.50

451

4.52

4.53

The size variable that appears the most relevant is the maximum
number of sectors as compared to airspace, which in many models was
insignificant. In other words, the larger the number of maximum sectors
required, the greater is the expected annual costs.

Variability creates substantial additional costs. This variable suggests
that ANSPs handling the same number of controlled hours as another
but with a substantial peak in demand over a month or more will require
more resources than an ANSP with more constant yet equivalent
demand over the year.

Complexity also impacts the costs of an ANSP but in two different
directions. First, complexity increases workload above and beyond the
hours controlled i.e. creates more work than estimated directly. On the
other hand, the management of ANSPs with higher complexity are
apparently better able to generate an efficient system which thus
explains the efficiency score ui. This is in line with previous analyses
(c.f. CEG, 2011, Adler et al., 2017).

Both the inefficiency and noise components are statistically significant
and clearly separable in the analysis, with lambda greater than 1.5. We
note that, based on the values of lambda, the inefficiencies explain
approximately 70% of the variation in the data and the rest is random
noise. This clearly suggests that there is substantial inefficiency in the
system being analysed.
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The results of the stochastic cost function models with respect to
terminal services are presented in Table 4-. Two models are analysed,
namely without and with a time trend variable that estimates market level
changes. All cost elements are PPPd to allow for international
comparisons. All variables are logged and normalized by the geometric
mean.

TERMINAL

Variable

Model (iii)

Model (iv)

Output

0.84 (0.01) ***

0.84 (0.01) ***

Staff Prices | 0.60 (0.03) *** 0.59 (0.03) ***
Capital input price | 0.10 (0.02) *** 0.08 (0.03) **
Staff Prices? | 0.12 (0.07) 0.12 (0.07)
Capital input price? | 0.05 (0.03) 0.03 (0.03)
Output? | 0.08 (0.02) *** 0.07 (0.02) ***
Staff Prices * Capital input price | 0.06 (0.04) 0.05 (0.04)
Output* Staff Prices | -0.09 (0.03) ** -0.09 (0.03) **
Output* Capital input price | 0.02 (0.02) 0.01 (0.02)
Variability | 4.34 (0.40) *** 4.53 (0.41) ***
Time -0.01 (0.00) *
Constant | -3.34 (0.32) *** -3.44 (0.33) ***

Inefficiency (m)

Complexity

-0.27 (0.13) **

-0.26 (0.11) **

Constant

0.46 (0.16) ***

0.49 (0.17) ***

oy (inefficiency error component)

0.16 (0.05) ***

0.16 (0.05) ***

Oy (stochastic noise error component)

0.23 (0.02) ***

0.22 (0.03) ***

A

0.70 (0.07) ***

0.72 (0.08) ***

Log-Likelihood

-37.5

-35.5

Notes: The analysis is based on 307 observations. Indicators: *significant at the 10 per cent confidence level; **

Table 4-5 Results of the terminal stochastic cost function

significant at 5 per cent confidence level; *** significant at 1 per cent confidence level.

4.55

The results of both models are consistent and the three independent
variables, namely output, staff and capital, are positive and significant
as expected. In other words, the higher any of these three elements, the
higher is the expected total cost.
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The time trend (model iv) is negative but with a small significance level.
This indicates that almost no cost reductions have been achieved over
time in terminal air traffic control provision.

As with the en-route stochastic cost function, variability increases costs
substantially.

The complexity index for the most part describes en-route traffic
provision but one element does also explain airport complexity.
Complexity did not prove significant in the SFA cost function but it does
explain efficiency (u). Since the management of the ANSPs are in
control of both en-route and terminal provision in most countries today,
it is reasonable that complexity is relevant in explaining managerial
efficiency in models (iii) and (iv) as it was in models (i) and (ii).
Complexity would appear to consistently help management ensure more
efficient use of resources.

Both the inefficiency and noise components are statistically significant
and clearly separable in the analysis. The model assigns the larger part
of variance to the random noise (as highlighted by a lambda lower than
1). Consequently, it would appear that it is necessary to work on
ensuring comparable data across countries in terms of terminal
provision.

Despite the (slightly) higher log-likelihood of model (iii), we analyse the
efficiency estimated through model (iv) to ensure consistency with the
en-route provision assessment.
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Data Envelopment Analysis

5.01

provision are presented in Table 5-1.
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The efficiency results of the DEA model for en-route air traffic control

All years | 15tperiod | 2" period Latest 3

years

ANSP Country 2006-2016 | 2006-2010 | 2011-2016 | 2014-2016
Austro Control Austria 0.73 0.79 0.68 0.67
Belgocontrol Belgium 0.52 0.53 0.52 0.53
BULATSA Bulgaria 0.36 0.27 0.45 0.50
Croatia Control Croatia 0.58 0.55 0.60 0.59
DCAC Cyprus Cyprus 0.87 0.75 0.97 1.00
ANS CR Czech Republic 0.57 0.56 0.58 0.55
NAVIAIR Denmark 0.92 0.93 0.91 0.90
EANS Estonia 0.92 0.97 0.88 0.84
Finavia Finland 0.96 1.00 0.92 0.94
DSNA France 0.86 0.88 0.84 0.82
DFS Germany 0.95 1.00 0.90 0.86
HCAA Greece 0.88 0.75 0.98 0.99
HungaroControl Hungary 0.59 0.68 0.51 0.53
MUAC International 1.00 1.00 1.00 1.00
IAA Ireland 0.85 0.83 0.86 0.96
ENAV Italy 0.67 0.68 0.65 0.64
LGS Latvia 0.78 0.63 0.91 0.82
Oro Navigacija Lithuania 0.40 0.34 0.45 0.45
MATS Malta 0.82 0.65 0.96 1.00
LVNL Netherlands 0.57 0.61 0.54 0.53
Avinor (Continental) Norway 1.00 0.99 1.00 1.00
PANSA Poland 0.51 0.51 0.51 0.47
NAV Portugal (Continental) Portugal 0.56 0.45 0.65 0.73
ROMATSA Romania 0.34 0.32 0.36 0.37
LPS Slovak Republic 0.41 0.40 0.42 0.43
Slovenia Control Slovenia 0.66 0.64 0.67 0.65
ENAIRE Spain 0.53 0.45 0.60 0.64
LFV Sweden 0.90 0.85 0.94 1.00
Skyguide Switzerland 0.99 0.98 1.00 1.00
NATS (Continental) UK 0.93 0.94 0.92 0.99

Table 5-1: DEA Efficiency estimates for en-route provision

5.02

Overall, the results of the DEA suggest that there is an average level of

inefficiency in the region of 25% given the current market organization.
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5.03

5.04

5.05

According to the average latest three year assessment (last column),
MUAC, Switzerland, Cyprus, Norway, Malta and Sweden are relatively
efficient together with Greece, Switzerland and the UK. It should be
noted that at least one ANSP must receive a score of one in each year
due to the nature of the DEA model. Furthermore, relatively specialised
ANSPs, for example with high seasonality, are likely to be deemed
relatively efficient and receive an efficiency score of one. The least
efficient include Romania, the Slovak Republic, Lithuania and Poland.

Comparing the average efficiency estimates from 2006 to 2010 (period
1 prior to the price capping regulation) and from 2011-2016 (period 2),
the majority of ANSPs show an efficiency improvement. Notable
improvements include Bulgaria, Cyprus, Latvia, Malta, Portugal and
Spain. On the other hand, Hungary, Austria, the Netherlands and
Germany show declines between the two periods on average.

The results for the DEA model applied to the terminal activities are
presented in Table 5-2. The terminal efficiency results do not include
Sweden (data only available to 2007), MUAC (only provides upper
airspace air traffic control provision) and the earliest years for Greece
(2006-2009).
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All years | 1% period pezrni(:)d L)el\;zsrts3
ANSP Countty | o1 | ooi0 | 2016 | 2016
Austro Control Austria 0.86 0.85 0.87 0.85
Belgocontrol Belgium 0.79 0.87 0.72 0.71
BULATSA Bulgaria 0.26 0.24 0.27 0.31
Croatia Control Croatia 0.57 0.69 0.47 0.50
DCAC Cyprus Cyprus 0.62 0.50 0.72 0.82
ANS CR Czech Republic 0.35 0.31 0.39 0.38
NAVIAIR Denmark 0.87 0.89 0.86 0.92
EANS Estonia 0.78 0.55 0.97 0.98
Finavia Finland 0.53 0.46 0.59 0.64
DSNA France 0.63 0.60 0.66 0.64
DFS Germany 0.97 0.98 0.95 0.90
HCAA Greece 0.61 0.46 0.74 1.00
HungaroControl Hungary 0.27 0.28 0.26 0.28
I1AA Ireland 0.73 0.81 0.66 0.77
ENAV Italy 0.66 0.70 0.62 0.61
LGS Latvia 0.43 0.29 0.56 0.53
Oro Navigacija Lithuania 0.36 0.37 0.35 0.37
MATS Malta 0.51 0.36 0.64 0.68
LVNL Netherlands 0.78 0.59 0.94 0.93
Avinor (Continental) Norway 0.52 0.50 0.55 0.60
PANSA Poland 0.49 0.49 0.48 0.47
NAV Portugal (Continental) Portugal 0.47 0.42 0.51 0.62
ROMATSA Romania 0.22 0.26 0.19 0.20
LPS Slovak Republic 0.25 0.27 0.24 0.23
Slovenia Control Slovenia 0.66 0.68 0.64 0.61
ENAIRE Spain 0.38 0.29 0.45 0.48
Skyguide Switzerland 0.70 0.66 0.74 0.67
NATS (Continental) UK 0.93 0.87 0.97 1.00
Table 5-2: DEA Efficiency estimates for terminal provision
5.06 Overall, the results of the DEA suggest that there is an average level of

inefficiency in the region of 40% given the current market organization.

5.07 According to the latest three year average, the UK and Greece are
deemed relatively efficient, together with Estonia and the Netherlands.
The least efficient include Romania, the Slovak Republic, Hungary and

Bulgaria.

5.08 Comparing the average efficiency estimates between periods 1 and 2, it
would appear that there are substantial changes over time. The majority
of ANSPs show an average efficiency improvement. The largest positive
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changes have been made by Latvia, Malta, Estonia, Greece, the
Netherlands, Spain and Cyprus. On the other hand, Croatia, Romania,
Ireland, Belgium and Italy show greater cost inefficiencies in terminal
provision over time.

Stochastic Frontier Analysis

5.09 The efficiency results of the SFA models (i) for en-route air traffic control
provision are presented in Table 5-3.
All years | 15tperiod | 2" period Latest 3
years
2006- 2006- 2011- 2014-
ANSP Country 2016 2010 2016 016
Austro Control Austria 0.89 0.90 0.88 0.89
Belgocontrol Belgium 0.88 0.90 0.87 0.87
BULATSA Bulgaria 0.63 0.52 0.73 0.81
Croatia Control Croatia 0.83 0.78 0.87 0.86
DCAC Cyprus Cyprus 0.50 0.40 0.58 0.59
ANS CR Czech Republic 0.74 0.70 0.77 0.80
NAVIAIR Denmark 0.60 0.65 0.55 0.53
EANS Estonia 0.74 0.78 0.70 0.70
Finavia Finland 0.56 0.60 0.53 0.51
DSNA France 0.84 0.84 0.84 0.80
DFS Germany 0.92 0.94 0.91 0.89
HCAA Greece 0.65 0.57 0.67 0.72
HungaroControl Hungary 0.65 0.68 0.63 0.66
MUAC International 0.94 0.94 0.95 0.94
IAA Ireland 0.54 0.54 0.54 0.57
ENAV Italy 0.66 0.67 0.66 0.62
LGS Latvia 0.56 0.52 0.60 0.56
Oro Navigacija Lithuania 0.48 0.43 0.52 0.53
MATS Malta 0.44 0.40 0.47 0.46
LVNL Netherlands 0.85 0.87 0.84 0.86
Avinor (Continental) Norway 0.70 0.64 0.75 0.70
PANSA Poland 0.71 0.69 0.72 0.72
NAV Portugal (Continental) Portugal 0.59 0.59 0.60 0.62
ROMATSA Romania 0.47 0.40 0.53 0.57
LPS Slovak Republic 0.77 0.68 0.85 0.90
Slovenia Control Slovenia 0.80 0.73 0.86 0.87
ENAIRE Spain 0.58 0.51 0.64 0.63
LFV Sweden 0.56 0.56 0.57 0.58
Skyguide Switzerland 0.89 0.87 0.90 0.90
NATS (Continental) UK 0.88 0.90 0.86 0.85

Table 5-3: SFA Efficiency estimates for en-route provision
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5.10

5.11

5.12

5.13

Overall, the results of the SFA suggest that there is an average level of
inefficiency in the region of 30% given the current market organization.

According to the average efficiency estimates of the most recent three
years, MUAC (international), Switzerland, the Slovak Republic,
Germany and Austria are deemed relatively more efficient. The least
efficient include Malta, Finland, Denmark and Lithuania.

Comparing the average efficiency estimates across the two periods, it
would appear that the majority of ANSPs either remained consistent or
improved. In particular, Cyprus, Bulgaria, Romania, Spain, and the
Slovak republic have achieved improvements of 25% and above.
However, Denmark, Estonia, and Finland all appear to have reduced in
efficiency between the two periods by 10% and above.

The results for model (iv) applied to the terminal activities are presented
in Table 5-4. The terminal efficiency results do not include Sweden (data
only available to 2007), MUAC (only provides upper airspace air traffic
control provision) and the earliest years for Greece (2006-2009).
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All years 15t period | 2"d period Latest 3

years

ANSP Country 2006-2016 | 2006-2010 | 2011-2016 | 2014-2016
Austro Control Austria 0.81 0.82 0.81 0.81
Belgocontrol Belgium 0.82 0.83 0.82 0.81
BULATSA Bulgaria 0.68 0.68 0.67 0.68
Croatia Control Croatia 0.73 0.73 0.73 0.74
DCAC Cyprus Cyprus 0.73 0.70 0.75 0.76
ANS CR Czech Republic 0.74 0.75 0.72 0.72
NAVIAIR Denmark 0.78 0.77 0.79 0.78
EANS Estonia 0.70 0.75 0.65 0.62
Finavia Finland 0.65 0.66 0.65 0.64
DSNA France 0.72 0.71 0.73 0.73
DFS Germany 0.87 0.88 0.87 0.86
HCAA Greece 0.77 0.66 0.79 0.88
HungaroControl Hungary 0.72 0.71 0.73 0.74
IAA Ireland 0.76 0.76 0.75 0.77
ENAV Italy 0.75 0.75 0.74 0.73
LGS Latvia 0.72 0.62 0.80 0.79
Oro Navigacija Lithuania 0.60 0.60 0.60 0.59
MATS Malta 0.68 0.63 0.72 0.73
LVNL Netherlands 0.82 0.82 0.82 0.80
Avinor (Continental) Norway 0.69 0.68 0.70 0.69
PANSA Poland 0.67 0.66 0.68 0.66
NAV Portugal (Continental) Portugal 0.69 0.69 0.70 0.72
ROMATSA Romania 0.60 0.58 0.61 0.60
LPS Slovak Republic 0.71 0.72 0.71 0.72
Slovenia Control Slovenia 0.86 0.86 0.86 0.86
ENAIRE Spain 0.72 0.66 0.77 0.78
Skyguide Switzerland 0.85 0.86 0.85 0.84
NATS (Continental) UK 0.81 0.81 0.82 0.82

Table 5-4: SFA Efficiency estimates for terminal provision

5.14

Overall, the results of the SFA suggest that there is an average level of

inefficiency in the region of 27% given the current market organization.

5.15

Based on the latest three year period (2014 to 2016 inclusive), Germany,

Slovenia, Greece and Switzerland are relatively more efficient. The least
efficient include Lithuania, Cyprus, and Romania are located at the
bottom of the ranks.
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5.16

5.17

5.18

5.19

Comparing the average efficiency estimates across the two periods, it
would appear that the majority of ANSPs remained consistent. However,
major improvements are estimated for Cyprus, Latvia, Greece and
Spain. On the opposite side, Estonia has the greatest reduction in
efficiency.

Combining the results

The suggested savings are based on the average cost efficiencies for
the latest three years, 2014 to 2016, and are computed as follows:

1 - Efficiency score = Potential saving

We combine the potential savings obtained by the DEA and the SFA
models following three approaches:

1) Potential savings as the maximum value resulting from the DEA
and SFA models

2) Potential savings as the minimum value resulting from the DEA
and SFA estimates

3) Potential savings as the average of the two sets of results

Table 5-5 presents the potential savings related to the en-route
provision. Values can be read as percentage reductions in costs
necessary to achieve efficient production levels.
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Maximum Minimum Average
ANSP Country potential potential potential
saving saving saving

Austro Control Austria 0.33 0.11 0.22
Belgocontrol Belgium 0.47 0.12 0.29
BULATSA Bulgaria 0.50 0.20 0.35
Croatia Control Croatia 0.41 0.14 0.27
DCAC Cyprus Cyprus 0.42 0.00 0.21
ANS CR Czech Republic 0.45 0.18 0.32
NAVIAIR Denmark 0.47 0.10 0.29
EANS Estonia 0.32 0.16 0.24
Finavia Finland 0.51 0.06 0.29
DSNA France 0.23 0.18 0.21
DFS Germany 0.14 0.13 0.13
HCAA Greece 0.23 0.01 0.12
HungaroControl Hungary 0.47 0.36 0.41
MUAC International 0.06 0.00 0.03
IAA Ireland 0.43 0.04 0.23
ENAV Italy 0.40 0.36 0.38
LGS Latvia 0.44 0.18 0.31
Oro Navigacija Lithuania 0.55 0.48 0.51
MATS Malta 0.55 0.00 0.28
LVNL Netherlands 0.47 0.11 0.29
Avinor (Continental) Norway 0.32 0.00 0.16
PANSA Poland 0.53 0.27 0.40
NAV Portugal (Continental) Portugal 0.38 0.27 0.33
ROMATSA Romania 0.63 0.45 0.54
LPS Slovak Republic 0.57 0.11 0.34
Slovenia Control Slovenia 0.35 0.13 0.24
ENAIRE Spain 0.37 0.36 0.37
LFV Sweden 0.42 0.00 0.21
Skyguide Switzerland 0.09 0.00 0.05
NATS (Continental) UK 0.16 0.01 0.08

Table 5-5: Potential savings for en-route provision (%)
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5.20 Table 5-6 presents the potential savings in monetary values (million
Euros) without PPP.
Millions euros
ANSP Country Maximym Minimgm Average
potential potential potential
savings savings savings
Austro Control Austria 51.6 175 34.5
Belgocontrol Belgium 44.3 11.2 27.7
BULATSA Bulgaria 41.0 15.8 28.4
Croatia Control Croatia 30.7 104 20.6
DCAC Cyprus Cyprus 14.6 0.0 7.3
ANS CR Czech Republic 45.7 18.6 32.2
NAVIAIR Denmark 38.3 8.4 23.3
EANS Estonia 5.2 2.6 3.9
Finavia Finland 20.0 2.6 11.3
DSNA France 2315 186.2 208.8
DFS Germany 111.3 103.4 107.4
HCAA Greece 28.2 1.4 14.8
HungaroControl Hungary 38.3 29.8 34.1
MUAC International 8.8 0.0 4.4
IAA Ireland 38.3 3.5 20.9
ENAV Italy 2135 195.2 204.3
LGS Latvia 7.6 3.2 54
Oro Navigacija Lithuania 114 9.8 10.6
MATS Malta 8.2 0.0 4.1
LVNL Netherlands 58.7 14.1 36.4
Avinor (Continental) Norway 24.2 0.0 121
PANSA Poland 70.9 36.0 53.5
NAV Portugal (Continental) Portugal 36.0 25.6 30.8
ROMATSA Romania 84.0 60.6 72.3
LPS Slovak Republic 30.2 5.9 18.0
Slovenia Control Slovenia 10.1 3.7 6.9
ENAIRE Spain 2155 210.0 212.7
LFV Sweden 64.0 0.0 32.0
Skyguide Switzerland 17.6 0.2 8.9
NATS (Continental) UK 98.0 7.6 52.8
Total 1,697.7 983.3 1,340.4

Table 5-6: Potential savings for en-route provision (million euros)
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5.21 The estimated total, annual, potential savings for en-route provision for
the market vary from one billion euros (minimum potential) equivalent to
an average of around 17% reduction in costs to 1.7 billion euros
(maximum potential) equivalent to around 30% savings.

5.22 Table 5-7 presents the potential savings related to the terminal
provision. Values can be read as percentage reductions in costs
necessary to achieve efficient production levels.

Maximum | Minimum | Average

ANSP Country potential | potential | potential
savings savings savings
Austro Control Austria 0.19 0.15 0.17
Belgocontrol Belgium 0.29 0.19 0.24
BULATSA Bulgaria 0.69 0.32 0.51
Croatia Control Croatia 0.50 0.26 0.38
DCAC Cyprus Cyprus 0.24 0.18 0.21
ANS CR Czech Republic 0.62 0.28 0.45
NAVIAIR Denmark 0.22 0.08 0.15
EANS Estonia 0.38 0.02 0.20
Finavia Finland 0.36 0.36 0.36
DSNA France 0.36 0.27 0.31
DFS Germany 0.14 0.10 0.12
HCAA Greece 0.12 0.00 0.06
HungaroControl Hungary 0.72 0.26 0.49
IAA Ireland 0.23 0.23 0.23
ENAV Italy 0.39 0.27 0.33
LGS Latvia 0.47 0.21 0.34
Oro Navigacija Lithuania 0.63 0.41 0.52
MATS Malta 0.32 0.27 0.29
LVNL Netherlands 0.20 0.07 0.13
Avinor (Continental) Norway 0.40 0.31 0.35
PANSA Poland 0.53 0.34 0.43
NAYV Portugal (Continental) Portugal 0.38 0.28 0.33
ROMATSA Romania 0.80 0.40 0.60
LPS Slovak Republic 0.77 0.28 0.53
Slovenia Control Slovenia 0.39 0.14 0.27
ENAIRE Spain 0.52 0.22 0.37
Skyguide Switzerland 0.33 0.16 0.24
NATS (Continental) UK 0.18 0.00 0.09

Table 5-7: Potential savings for terminal provision (%)
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5.23 Table 5-8 presents the potential savings in monetary values (million
Euros) without PPP.
Millions euros
ANSP Country Maximl_Jm Minimqm Average
potenual pote(mal potentlal
saving saving saving
Austro Control Austria 6.72 5.47 6.09
Belgocontrol Belgium 15.45 9.91 12.68
BULATSA Bulgaria 5.84 2.73 4.28
Croatia Control Croatia 4.71 2.43 3.57
DCAC Cyprus Cyprus 0.93 0.70 0.82
ANS CR Czech Republic 14.03 6.26 10.14
NAVIAIR Denmark 6.61 2.38 4.50
EANS Estonia 0.67 0.04 0.35
Finavia Finland 8.74 8.67 8.71
DSNA France 86.43 65.80 76.12
DFS Germany 32.22 21.50 26.86
HCAA Greece 2.67 0.00 1.34
HungaroControl Hungary 11.05 3.99 7.52
1AA Ireland 4.84 477 4.80
ENAV Italy 55.49 38.21 46.85
LGS Latvia 2.39 1.04 1.71
Oro Navigacija Lithuania 3.18 2.03 2.61
MATS Malta 1.00 0.84 0.92
LVNL Netherlands 11.08 3.79 7.44
Avinor (Continental) Norway 34.13 26.12 30.13
PANSA Poland 13.73 8.83 11.28
NAV Portugal (Continental) Portugal 9.04 6.75 7.89
ROMATSA Romania 22.75 11.19 16.97
LPS Slovak Republic 5.16 1.89 3.52
Slovenia Control Slovenia 1.40 0.51 0.96
ENAIRE Spain 88.01 38.00 63.00
Skyguide Switzerland 37.40 18.38 27.89
NATS (Continental) UK 29.59 0.00 14.79
Total 515.26 292.23 403.74

Table 5-8: Potential savings for terminal provision (million euros)
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5.24

5.25

5.26

The estimated annual, system total, potential savings for terminal
provision vary from 290 million euros (minimum potential) equivalent to
around 18% of the 2016 terminal provision costs to 515 million euros
(maximum potential) equivalent to 33% savings.

Determined Unit Cost Forecast

We forecast the determined unit cost for the third reference period based
on the model total cost estimates. In order to estimate costs for 2020 to
2024, we have relied on the base case scenario output estimates
recently published by STATFOR®. The seven year forecast estimates
flight movements and service units for all the countries analysed in this
report except for MUAC. However, the en-route analyses undertaken in
this report are based on flight hours controlled. Consequently, we
calculated the average time per flight per ANSP in 2016 and assume
that this remains constant over the timeframe. Subsequently, we were
able to adapt the flight movement estimates to flight hours controlled for
reference period 3 (RP3). Furthermore, we assume that all other
variables remain constant, including the price of labour, price of capital,
maximum number of sectors, complexity and seasonality.

After estimating the efficient total costs per ANSP for RP3 according to
the two models, we then divided the values by the service unit forecasts
in order to create Tables 5-9 and 5-10. The tables specify the projected,
best practice, determined unit costs for each ANSP in 2016 standardized
PPP euros.

s https://www.eurocontrol.int/sites/default/files/content/documents/official-
documents/forecasts/seven-year-flights-service-units-forecast-2017-2023-Feb2017.pdf
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Country 2020 2021 2022 2023 2024
Austria 32.99 32.99 32.99 33.00 33.01
Belgium 15.49 15.37 15.26 15.15 15.03
Bulgaria 23.95 23.52 23.09 22.66 22.23
Croatia 42.73 42.52 42.31 42.13 41.94
Cyprus 26.85 27.52 28.16 28.84 26.09

Czech Republic 29.55 29.20 28.87 28.59 28.34
Denmark 35.06 34.76 34.48 34.24 34.00
Estonia 21.02 20.91 20.83 20.75 20.66
Finland 33.01 32.73 32.45 32.25 32.03
France 36.88 36.69 36.49 36.32 36.20
Germany 40.71 40.15 39.56 39.10 38.61
Greece 30.57 30.51 30.47 30.44 30.40
Hungary 26.04 25.68 25.33 25.00 24.69
Ireland 18.07 17.86 17.73 17.60 17.45

Italy 39.67 39.51 39.33 39.18 39.02
Latvia 23.83 23.80 23.80 23.82 23.84
Lithuania 27.43 27.40 27.26 27.14 27.07
Malta 20.76 20.17 19.65 19.10 18.55
Netherlands 18.79 19.40 19.96 20.58 21.24
Norway 39.16 39.14 39.12 39.05 38.91
Poland 24.68 24.05 23.53 23.15 22.83
Portugal 25.76 25.82 25.91 25.93 25.92
Romania 21.83 21.70 21.57 21.45 21.33

Slovak Republic 27.87 27.59 27.30 27.01 26.73

Slovenia 39.35 39.16 38.93 38.81 38.63

Spain 41.29 40.91 40.54 40.15 39.77
Sweden 33.34 33.16 33.01 32.89 32.79
Switzerland 83.72 83.72 83.57 83.47 83.32
UK 46.75 46.40 46.13 45.88 45.64

Table 5-9: Determined Unit Cost Rate per ANSP for RP3 using DEA
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Country 2020 2021 2022 2023 2024
Austria 41.69 41.11 40.53 40.03 39.51
Belgium 26.86 26.43 26.00 25.64 25.28
Bulgaria 38.08 36.92 35.81 34.74 33.68
Croatia 61.49 60.24 59.02 57.91 56.77
Cyprus 13.14 13.23 13.31 13.42 11.95
Czech Republic 39.32 38.26 37.31 36.52 35.77
Denmark 17.47 17.21 16.93 16.69 16.44
Estonia 18.18 17.86 17.49 17.16 16.82
Finland 17.72 17.50 17.25 17.05 16.82
France 43.69 43.41 43.13 42.90 42.71
Germany 52.20 51.83 51.43 51.12 50.80
Greece 23.99 23.73 23.50 23.27 23.04
Hungary 24.79 2411 23.44 22.84 22.24
Ireland 10.63 10.47 10.33 10.21 10.07
Italy 39.77 39.58 39.38 39.21 39.03
Latvia 15.33 15.20 15.04 14.91 14.78
Lithuania 33.99 33.52 32.96 32.47 32.00
Malta 8.83 8.52 8.22 7.93 7.63
Netherlands 27.82 27.65 27.38 27.16 26.93
Norway 17.54 17.49 17.42 17.32 17.20
Poland 39.26 38.22 37.29 36.57 35.91
Portugal 18.48 18.29 18.14 17.98 17.80
Romania 24.90 24.33 23.78 23.28 22.78
Slovak Republic 58.68 56.78 54.87 53.15 51.50
Slovenia 61.56 60.23 58.88 57.76 56.53
Spain 44.98 44.60 44.25 43.85 43.46
Sweden 18.72 18.54 18.37 18.23 18.10
Switzerland 70.96 70.32 69.58 68.99 68.33
UK 41.56 41.19 40.90 40.61 40.33

5.27

5.28

Table 5-10: Determined Unit Cost Rate per ANSP for RP3 using SFA

Tables 5-9 and 5-10 show the large differences in costs across the
multiple countries with the efficient average determined unit cost
dropping from 33 standardized euros to just under 31 over the five year
timeframe despite the estimated increases in traffic.

In light of the fact that DEA tends to favour specialists and SFA tends to
reward the average, the results are different. We combine the
determined unit costs using the benefit of the doubt approach (maximum
cost which favours the ANSP over the consumer) leading to the results
in Table 5-11.
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Country 2020 2021 2022 2023 2024
Austria 41.69 41.11 40.53 40.03 39.51
Belgium 26.86 26.43 26.00 25.64 25.28
Bulgaria 38.08 36.92 35.81 34.74 33.68
Croatia 61.49 60.24 59.02 57.91 56.77
Cyprus 26.85 27.52 28.16 28.84 26.09
Czech Republic 39.32 38.26 37.31 36.52 35.77
Denmark 35.06 34.76 34.48 34.24 34.00
Estonia 21.02 20.91 20.83 20.75 20.66
Finland 33.01 32.73 32.45 32.25 32.03
France 43.69 43.41 43.13 42.90 42.71
Germany 52.20 51.83 51.43 51.12 50.80
Greece 30.57 30.51 30.47 30.44 30.40
Hungary 26.04 25.68 25.33 25.00 24.69
Ireland 18.07 17.86 17.73 17.60 17.45
Italy 39.77 39.58 39.38 39.21 39.03
Latvia 23.83 23.80 23.80 23.82 23.84
Lithuania 33.99 33.52 32.96 32.47 32.00
Malta 20.76 20.17 19.65 19.10 18.55
Netherlands 27.82 27.65 27.38 27.16 26.93
Norway 39.16 39.14 39.12 39.05 38.91
Poland 39.26 38.22 37.29 36.57 35.91
Portugal 25.76 25.82 25.91 25.93 25.92
Romania 24.90 24.33 23.78 23.28 22.78
Slovak Republic 58.68 56.78 54.87 53.15 51.50
Slovenia 61.56 60.23 58.88 57.76 56.53
Spain 44.98 44.60 44.25 43.85 43.46
Sweden 33.34 33.16 33.01 32.89 32.79
Switzerland 83.72 83.72 83.57 83.47 83.32
UK 46.75 46.40 46.13 45.88 45.64
Average max DUC 37.87 37.42 36.99 36.61 36.10

Table 5-11: Highest Efficient Determined Unit Cost Rate per ANSP for RP3

5.29 In summation, the results suggest that the determined unit cost rate for
the beginning of RP3, were the ANSPs to provide their services
efficiently, could be in the range of 38 standardized 2016 euros and that
this should drop by 5% to 36 euros in 2024.
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6. Final remarks

6.01

6.02

6.03

6.04

6.05

6.06

6.07

Regulatory Benchmarking

Benchmarking methods, and in particular Data Envelopment Analysis
(DEA), and Stochastic Frontier Analysis (SFA) have become well-
established and informative tools for purposes of economic regulation.
DEA and SFA are now routinely used by European regulators to set
reasonable revenue / price caps for energy transmission and distribution
system operators for example.

The cost efficiency of Air Navigation Service Providers (ANSPs) is an
important element in the creation of an efficient Single European Sky.
Each ANSP serves an individual airspace and in so doing is a natural
monopoly. Since there is little direct competition in the market, efficiency
is not encouraged by sound competitive pressure.

Benchmarking allows us to identify best practices, and if ANSPs are
asked over time to adjust to best-practice cost, their cost efficiency will
converge towards cost in a competitive setting. Hence, instead of
competing on the market, we create pseudo competition via
benchmarking based regulation, where the ANSPs compete via a
model.

We note that this issue is particularly relevant in en-route provision given
the clear monopolistic status of the ANSPs. For terminal provision, it
would appear that there is an alternative in which an auctioning of the
air traffic control service is possible and could replace the need for
economic regulation.

In this report, we develop two such benchmarking models, and we
discuss how to combine them. One is based on data envelopment
analysis (DEA) and another on stochastic frontier analysis (SFA). They
can be combined in different ways (min, max, average) to determine
more or less ambitious cost targets for each individual ANSP.

A first attempt

The application of benchmarking in regulation, however, requires
specific steps in terms of data validation, model specification and outlier
detection that are not systematically documented in open publications.

It is important to understand that the results presented in this report
represent the first set of benchmarking based cost targets. The
underlying benchmarking models have been developed in a short
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6.08

6.09

6.10

6.11

6.12

6.13

6.14

6.15

timeframe based on pre-prepared data covering the years 2006 to 2016
inclusive. We note the time lag of a year and a half before data is
published creates a more complicated regulatory process. Furthermore,
we have had very little time to properly assess the dataset.

In these respects, the exercise undertaken deviates from more
established regulatory benchmarking that often stretches over a longer
timeframe normally one to two years, and is based on data collection
that is tailored to the planned benchmarking exercise.

This explains some of the reasons for the different sets of results we
obtained using DEA and SFA, and it provides a background for the
proper application of our results.

Methodological differences

Part of the variation of our results can be explained by the nature of the
two approaches we have used. In the DEA models, all deviations from
the model are classified as inefficiency while SFA uses a combination of
noise and inefficiency to explain the deviations.

Furthermore, the SFA model makes more assumptions ex ante,
including the structure of the cost function and the existence of
competitive prices which may also be driving some of the differences in
the results.

Finally, we note that the SFA model leads to a cost function which
penalizes ANSPs that behave somewhat differently to the average.
DEA, based on an envelopment frontier, is likely to estimate higher
efficiency levels for those that specialize. In this context, we have
applied a benefit of the doubt approach in the final results, which is to
the benefit of the producer rather than the consumer, namely the airlines
and passengers.

Application of our results

Given the uncertainty we experience in the establishment of good cost
targets, we have applied the results cautiously leading to conservative
savings estimates.

For the ANSPs that are consistently shown to be rather inefficient in all
models, it makes sense to set more challenging cost saving targets than
for those where the uncertainty is large.

A best-off approach to the combination of results may in this context be
most appropriate. Consequently, the determined unit costs are based
on this approach alone.
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6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

Future developments

We also suggest that the results should be improved over time. There
are many ways to do so, including a further investigation of the cost
standardization and the inclusion of other possible cost drivers such as
quality of the services provided.

The cost measures need a closer investigation. We have undertaken a
series of sensitivity tests, including PPPing only parts of the cost base
to reflect that some capital costs may be bought on an international
market. Still, further investigations would be worthwhile.

Ideally, all ANSPs should use the same rules for allocating shared costs
between en-route and terminal activities and across cost categories.
Moreover, the ANSPs should also use a standardized depreciation
pattern which would reduce some of the noise in the data.

Quality

Another aspect that may be important but that is largely ignored here is
the quality of service provided. Multiple key performance indicators have
been created and some could be included in the cost analysis. For
example, delays are collected and categorised according to cause,
which could be included within the analysis. In other words, both
capacities and flight efficiency indicators could be included in the cost
based analyses.

Certain quality measures are difficult to include since they are affected
by many random conditions outside the control of the ANSP but some
are likely more directly affected by the choice of technology employed,
which could therefore be included in a next step.

Fixed market structure

Our analysis presumes that the number of ANSPs are fixed and that the
deviation of air space between them remains unaltered.

We hereby do not measure the possible gains or cost savings from
consolidation of the Single European Sky.

European best practices

It is important to note that we only calculate potential savings of the less
efficient European ANSPs adjusting to the practices of the more efficient
European ANSPs. We do not make comparisons with air navigation
services on other continents.
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6.24

6.25

6.26

Reports, such as those produced by the FAA and Eurocontrol®, seem to
indicate that the US system is substantially more efficient than that of
Europe. In effect, an analysis looking for possible comparators outside
of the EU could lead to much higher savings potential.

Of course, it might also be that the variation in European efficiencies is
larger than that of the US. If this is the case, the bias from using a
European perspective only is less important. However, the real impact
of economies of scale would only be possible with such a comparison.

Regulation or competition

It might also be interesting to investigate the possibilities of introducing
competition for the market rather than regulating prices. In terminal
provision, this possibility exists in Sweden, the UK and Germany and is
being introduced in Spain. We do not have Swedish data but the
German and UK efficiency estimates are among the higher in the
terminal analysis.

¢ https://www.faa.gov/air _traffic/publications/media/us eu comparison 2015.pdf. Accessed on

23/5/2018.


https://www.faa.gov/air_traffic/publications/media/us_eu_comparison_2015.pdf
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